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Metoda elementów 
skończonych

(MES2)

Wykład 3. Zagadnienia dynamiki



2

Nieustalone  równanie równowagi dynamicznej dla liniowej struktury dyskretnej (równania ruchu)

gdzie: [M] - macierz masowa (bezwładności),

[C] - macierz tłumienia,

[K] - macierz sztywności,

{q} - wektor przemieszczeń węzłowych, 

ሶ{q} - wektor prędkości węzłowych,

ሷ{q} - wektor przyspieszeń węzłowych,

{F(t)} - wektor obciążenia.
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Przypadki szczególne:

{F(t)} = {0} - drgania swobodne

{F(t)} = {0}, [C]=[0] - drgania swobodne bez tłumienia

[M]=[0], {F(t)} = {0} , [C]=[0] - problem statyki liniowej

Wprowadzenie do zagadnienia dynamiki struktur

  
1

2
U q K q=   Energia odkształcenia sprężystego:   

1

2
T q M q=   



Energia kinetyczna:

𝑀
𝑛×𝑛

𝑞
𝑛×1

∘∘

+ 𝐶
𝑛×𝑛

𝑞
𝑛×1

∘

+ 𝐾
𝑛×𝑛

𝑞
𝑛×1

= 𝐹(𝑡)
𝑛×1

- model tłumienia Rayleigha𝐶 = 𝛼𝑡 𝑀 + 𝛽𝑡 𝐾

𝛼𝑡,𝛽𝑡 - współczynniki tłumienia zewnętrznego i wewnętrznego
(wyznaczane doświadczalnie)

Macierz tłumienia przedstawiana jest jako kombinacja 
liniowa macierzy bezwładności i macierzy sztywności:

𝛾 = 𝛼𝑡
2𝜔

+ 𝛽𝑡∙𝜔
2

Współczynnik tłumienia lepkościowego
𝛾



3

WARTOŚCI WŁASNE I WEKTORY WŁASNE W ALGEBRZE

Rozważmy szczególną postać układu liniowego, w którym wektor po prawej stronie jest 
wielokrotnością wektora rozwiązania x:

Ax =  x lub rozpisując:

Jest to standardowe (klasyczne) algebraiczne zagadnienie na wartości własne. 
Układ można przekształcić do postaci jednorodnej (A − λI) x = 0.

Nietrywialne rozwiązanie tego równania jest możliwe wtedy i tylko wtedy, gdy macierz 
A−λI jest osobliwa, a jej wyznacznik:  |A − λI| =  0

W rezultacie otrzymujemy algebraiczne równanie wielomianowe stopnia n ze względu na λ:

P(λ) = λn + α 1λ
n-1 +・・・+αn = 0

Jest to znane jako równanie charakterystyczne macierzy A. Lewa strona nazywana jest 
wielomianem charakterystycznym. Wiemy, że wielomian stopnia n ma n (zwykle zespolonych) 
pierwiastków λ1, λ2, . . ., λn. Te n liczb nazywane są wartościami własnymi macierzy A.

Dla każdej wartości własnej λi mamy związany z nią wektor własny xi  który spełnia równanie Axi = λi xi.

Wektor własny jest określony tylko do pewnego współczynnika skali: jeśli xi jest wektorem własnym, to βxi również, 
gdzie β jest dowolną liczbą różną od zera.

Wektory własne są często normalizowane, tak że np. ich długość euklidesowa wynosi 1.
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Drgania swobodne - analiza modalna

       0M q K q+ = - układ równań różniczkowych drugiego rzędu

Rozwiązanie ogólne:      ( ) cos sin
A B

q t q t q t = +

𝑞 𝐴 , 𝑞 𝐵 - wektory obliczone z warunków początkowych

 - częstość własna

       2 2 2cos sin
A B

q q t q t q    = − − = −

       2 0M q K q− + =

Rozwiązanie trywialne:    0q =

Rozwiązania nietrywialne:    ( )2det 0K M− =

Wyznacznik - wielomian n-tego stopnia w odniesieniu do 𝜔2

Rozwiązaniami są częstości własne (wartości własne) 𝜔𝑖

Odpowiednie wektory własne nazywane są postaciami własnymi 𝑞 𝑖

Rozwiązanie jest znacznie bardziej czasochłonne niż rozwiązanie układu równań liniowych w analizie statycznej.

Do znalezienia ograniczonej liczby wartości własnych (częstości własnych) w interesującym zakresie stosuje się 
iteracyjne techniki numeryczne.

- problem na wartości własne   ( )   2 0K M q− =

Zwykle wektory własne normalizuje się:      ijj ji i
q q q I q = =          ijji

q M q =  lub



5

Macierz masowa elementu skończonego

Zdefiniujmy energię kinetyczną elementu:    
1

2
e ee e
T q m q=   

Wektor przemieszczenia w elemencie:     
e

u N q=

Wektor prędkości:     
e

d
u N q

dt
= 

Energia kinetyczna części  𝑑Ω𝑒 elementu skończonego Ω𝑒:

   
1 1

2 2
e edT u dm u u u d= =       

Wyrażenie opisuje tak zwaną spójną macierz masową (określoną przy użyciu tego samego podejścia 
co macierz sztywności). 
Aby uprościć obliczenia w algorytmach numerycznych można również użyć tak zwanej skupionej 
macierzy mas (diagonalnej)

     
1

2
e

T

e e ee
T q N N d q



=     - energia kinetyczna elementu skończonego o objętości Ω𝑒

Ogólny wzór na macierz masową 
elementu skończonego:

     
e

T

ee
m N N d



= 

    
1

2

T

e eee
dT q N N q d=    
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Macierz masowa dla elementu prętowego
Macierz mas dla elementu osiowego

( )
2

2

0 0

( ) 1

2 2

e el l

e

dm u
T u Ad = = 




Prędkość cząstek wzdłuż elementu: ( ) ( ) ( ) 1

1 2

2

,
q

u N N
q

  
 

=     
 






Po obliczeniu całek otrzymujemy:

  1

1 2

2

1
,

2
e e

q
T q q m

q

 
=     

 






Postać diagonalna (skupiona) macierzy:  
0

2

0
2

e

e
e

Al

m
Al





 
 

=  
 
  

   
e

ee
m N N d



=   

1 21 , ,
e e

N N
l l

 
= − =

 
2 1

1 26

e
e

Al
m


=

Konsystentna

macierz masowa 

dla pręta 

q2q1
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Przykład 1

q
1 2

q
3

q

ee

21 3

E,A

10.7071

E
=1.6114

1

1

=5.6293
2

E1

swobodne drgania osiowe pręta zamocowanego na jednym końcu 
– model z 2 elementami

Rozwiązanie analityczne

2 1 1

2

s

i

i E

l
 



−
=

1

2

1
1.5708 ,

1
4.7124 ,

s

s

E

l

E

l







=

=

Rozwiązanie MES przy użyciu modelu z 2 elementami skończonymi

Równanie swobodnych drgań    ( )   2 0K M q− =

Macierz sztywności i macierz masowa dla obu elementów:

 
1 1

1 1e
e

EA
k

l

−
=

−
 

2 1

1 26

e

e

Al
m


=

2
e

l
l =

1

2

2

3

1 1 0 2 1 0 0

1 2 1 1 4 1 0
6

0 1 1 0 1 2 0

e

e

q
AlEA

q
l

q




 −    
    

− − − =    
    −     
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1

2

2

3

1 1 0 2 1 0 0

1 2 1 1 4 1 0
6

0 1 1 0 1 2 0

e

e

q
AlEA

q
l

q




 −    
    

− − − =    
    −     

podstawiając:
2

2 2

6 6

ee

e

lAl EA

l E


  = =

2 4 (1 )
det 0

(1 ) (1 2 )

 

 

− − + 
= 

− + − 
rozwiązanie nietrywialne dla:

Pierwiastki równania charakterystycznego macierzy:

1 0.1082 =

2 1.3204 =

1

2

1 1
0.8057 1.6114 ,

1 1
2.8148 5.6293 .

e

e

E E

l l

E E

l l


 


 

= =

= =

Porównanie z dokładnym rozwiązaniem

mamy względne błędy 
częstości własnych 
wynoszące 2,6% i 19,5%.

1

2

1
1.5708 ,

1
4.7124 ,

s

s

E

l

E

l







=

=

1 0q = 22

3

2 1 4 1 0

1 1 1 2 06

e

e

qAlEA

ql




 −    
− =     −    

mamy:
2 −1
−1 1

− 𝜆
4 1
1 2

𝑞2
𝑞3

=
0
0

7𝜆2 − 10𝜆 + 1 = 0

równanie charakterystyczne 
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Mamy zatem postaci drgań: 
(wektory własne)

q
1 2

q
3

q

ee

21 3

E,A

10.7071

E
=1.6114

1

1

=5.6293
2

E1

1
0, 0.707 ,q =        

2
0, 0.707 ,q = −        

Uwzględniając, że 𝒒𝟏= 𝟎 i przyjmując, że 𝒒𝟑 = 𝜟 mamy, dla kolejnych pierwiastków równania charakterystycznego 
macierzy:

Wektory własne:

2 −1
−1 1

− 𝜆
4 1
1 2

𝑞2
𝑞3

=
0
0

2 − 4𝜆 −(1 + 𝜆)
−(1 + 𝜆) (1 − 2𝜆)

𝑞2
𝑞3

=
0
0

𝑞2=
1+𝜆

2 1−2𝜆
∙𝑞3

𝑞2 =
1−2𝜆
1+𝜆

∙𝑞3

𝜆1 = 0.1082
𝑞2=

1+𝜆1
2 1−2𝜆1

∙Δ

𝑞2 =
1−2𝜆1
1+𝜆1

∙Δ
= 0.707 ∙ Δ

𝜆2 = 1.3204
𝑞2=

1+𝜆2
2 1−2𝜆2

∙Δ

𝑞2 =
1−2𝜆2
1+𝜆2

∙Δ
= −0.707 ∙ Δ

1 0.1082 =

2 1.3204 =
Pierwiastki równania charakterystycznego macierzy:
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Macierz masowa prostego elementu belkowego

Energia kinetyczna segmentu       belkid

2( ) 2edT dm w=  
(bez ruchu obrotowego)

Prędkość segmentu:

ሶ𝑤 𝜉 = 𝑁1 𝜉 , 𝑁2 𝜉 , 𝑁3 𝜉 , 𝑁4 𝜉

ሶ𝑞1
ሶ𝑞2
ሶ𝑞3
ሶ𝑞4

Ten sam wynik można uzyskać stosując ogólny wzór:      
e

T

ee
m N N d



= 

𝑇𝑒 = න

0

𝑙𝑒

𝑑𝑇𝑒 =
1

2
න

0

𝑙𝑒

ሶ𝑤 2 𝜌𝐴𝑑𝜉
Energia kinetyczna:

funkcje kształtu 
elementu belki:

2 3

1 2 3

2 3

2 2

2 3

3 2 3

2 3

4 2

( ) 1 3 2 ,

( ) 2 ,

( ) 3 2 ,

( ) .

e e

e e

e e

e e

N
l l

N
l l

N
l l

N
l l

 


 
 

 


 


= − +

= − +

= −

−
= +

konsystentna macierz masowa belki:

 
2 2

2

156 22 54 13

4 13 3

156 22420

4

e e

e e ee

e
e

e

l l

l l lAl
m

l

l



−

−
=

−

1

2 2

2

1 2 3 4

3

2

4

156 22 54 13

4 13 31
, , ,

sym. 156 222 420

4

e e

e e ee
e

e

e

ql l

ql l lAl
T q q q q

ql

ql



−  
 

−  
=     

−  
  









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Przykład 2 – Obliczyć częstości drgań własnych belki wspornikowej o długości l, wykorzystując 
model w postaci jednego elementu belkowego. 

Jednoelementowy model MES:

q
4

q
1

q
2

q
3

=1.38
=3.533

1

1
2

EI

A

=7.62

A

EI
=34.81

2

1
2

Dokładne rozwiązanie analityczne:

𝜔1
𝑠 = 3.5156 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔2
𝑠 = 22.0346 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔𝑖
𝑠 =

2𝑖 − 1 𝜋

2

2

⋅
1

𝑙2
𝐸𝐼

𝜌𝐴
, 𝑖 = 3,4. . . ,

UWAGA –

1) bez rotacji, 

2) są tylko 2 masowe stopnie swobody
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Rozwiązanie MES - problem na wartości własne

2
3

2 23

4

6 3 156 22 02

3 2 22 4 0420

ql lEI Al

ql l l ll

  − −    
− =     − −    

Korzystanie z nowego parametru:
4

2

840

Al

EI


 = 

otrzymujemy równanie charakterystyczne: 140𝜆2 − 204𝜆 + 3 = 0

i pierwiastki: 𝜆1 = 1.4857 ⋅ 10−2,
𝜆2 = 1.4423.

Równanie swobodnych drgań:    ( )   2 0K M q− =

Warunki brzegowe: 𝑞1 = 0 𝑖 𝑞2 = 0

2 2

6 3 156 22
det 0

3 2 22 4

l l

l l l l


 − −    
− =     − −

    

q
4

q
1

q
2

q
3

=1.38
=3.533

1

1
2

EI

A

=7.62

A

EI
=34.81

2

1
2

𝜔1 = 3,533
1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔2 = 34,81
1

𝑙2
𝐸𝐼

𝜌𝐴
.

0.5%

58%

𝜔1
𝑠 = 3.5156 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔2
𝑠 = 22.0346 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

analityczne: błąd:

1

2 2 2 2

22

3

3

2 2

4

6 3 6 3 156 22 54 13 0

2 3 4 13 3 02

6 3 156 22 0420

2 4 0

ql l l l

ql l l l l lEI Al

ql ll

ql l




 − −    
    

− −     
− =    − −     

        

dla belki:



q
4

q
1

q
2

q
3

=1.38
=3.533

1

1
2

EI

A

=7.62

A

EI
=34.81

2

1
2

1 postać

2 postać

13

Wektory własne:

3

2 2

4

6 156 3 22 0

3 22 2 4 0

l l q

l l l l q

 

 

− − +     
=    

− + −    

dla pierwszej postaci

dla drugiej postaci

W ANALIZIE MODALNEJ MES:

Dobra dokładność wyników (częstości własne i postaci drgań) nawet w przypadku zgrubnego 
tworzenia siatki.

Zwykle lepsza dokładność odpowiada niższej częstości

Zakładając ( )3q = 

𝑞 1 = 0,0, 𝛥, 1.38
𝛥

𝑙
,

𝑞 2 = 0,0, 𝛥, 7.62
𝛥

𝑙
.

3 41 1
,q q q=       1

𝜆1 = 1.4857 ⋅ 10−2
4 1.38q

l


=

3 42 2
,q q q=       2

𝜆2 = 1.4423
4 7,62q

l


= 

𝑞4 =
− 6 − 156𝜆

−3 + 22𝜆
⋅
𝑞3
𝑙

𝑞4 =
−3 + 22𝜆

−2 + 4𝜆
⋅
𝑞3
𝑙

𝜆1 = 1.4857 ⋅ 10−2,
𝜆2 = 1.4423.

Pierwiastki równania charakterystycznego macierzy:



mode shape  7 ,   ω1=3704.3 , bending 
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Przykład 3. Zbuduj model elementów skończonych analizy modalnej struktury 2D 
składającej się z belki, sprężyny i masy M0. Belka jest reprezentowana przez 2 elementy 
skończone. 
Znajdź częstotliwości własne (f1, f2) i odpowiadające im wektory własne. Narysuj postać 
drgań. Oblicz minimalną wartość sztywności sprężyny, tak aby postać drgań o zerowym 
przesunięciu masy M0 stał się pierwszą postacią drgań.



mode shape  7 ,   ω1=3704.3 , bending 
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Globalny wektor parametrów węzłowych:



mode shape  7 ,   ω1=3704.3 , bending 
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Lokalna macierz sztywności:

Lokalna macierz masowa:



mode shape  7 ,   ω1=3704.3 , bending 
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Rozszerzone macierze sztywności:



mode shape  7 ,   ω1=3704.3 , bending 

18

Rozszerzone macierze masowe:



mode shape  7 ,   ω1=3704.3 , bending 
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Globalna macierz sztywności:

Globalna macierz masowa:



mode shape  7 ,   ω1=3704.3 , bending 
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Warunki brzegowe:

Układ równań:    ( )   2 0K M q− =



mode shape  7 ,   ω1=3704.3 , bending 
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   ( )2det 0K M− =



mode shape  7 ,   ω1=3704.3 , bending 
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𝑓 = 𝜔/2𝜋

częstość własna 

Częstotliwość drgań:



mode shape  7 ,   ω1=3704.3 , bending 
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Wektory własne:

oznaczmy:
Mamy zatem:



mode shape  7 ,   ω1=3704.3 , bending 
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mode shape  7 ,   ω1=3704.3 , bending 
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mode shape  7 ,   ω1=3704.3 , bending 
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mode shape  7 ,   ω1=3704.3 , bending 
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mode shape  7 ,   ω1=3704.3 , bending 
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Przykład 4a – drgania swobodne belki wspornikowej – postaci drgań własnych i częstości 
drgań własnych

y
z

y

z

E=2*10  MPa
5

=0.3

=8*10  
kg

m

3

3model MES

NOV 30 2002

20:14:51

PLOT NO.   2

NODAL SOLUTION

STEP=1

SUB =1

FREQ=34.869

SEQV     (AVG)

PowerGraphics

EFACET=1

AVRES=Mat

DMX =.876949

SMN =.263E+07

SMX =.162E+11

XV  =-.685325

YV  =.386713

ZV  =.617076

DIST=.431871

XF  =.03

YF  =.044985

ZF  =.500918

A-ZS=.09573

Z-BUFFER

.263E+07

.180E+10

.360E+10

.540E+10

.720E+10

.108E+11

.126E+11

.144E+11

.162E+11

postać drgań 1 ,   ω1=219.1

drgania giętne w pł. xz

NOV 30 2002

20:15:32

PLOT NO.   4

NODAL SOLUTION

STEP=1

SUB =3

FREQ=122.472

SEQV     (AVG)

PowerGraphics

EFACET=1

AVRES=Mat

DMX =1.047

SMN =.396E+09

SMX =.560E+11

XV  =-.685325

YV  =.386713

ZV  =.617076

DIST=.440329

XF  =.033499

YF  =.020005

ZF  =.500501

A-ZS=.09573

Z-BUFFER

.396E+09

.657E+10

.127E+11

.189E+11

.251E+11

.374E+11

.436E+11

.498E+11

.560E+11

postać drgań 3 ,   ω3=769.5 

drgania giętno-skrętne

NOV 30 2002

20:15:03

PLOT NO.   3

NODAL SOLUTION

STEP=1

SUB =2

FREQ=53.049

SEQV     (AVG)

PowerGraphics

EFACET=1

AVRES=Mat

DMX =1.045

SMN =.224E+09

SMX =.191E+11

XV  =-.685325

YV  =.386713

ZV  =.617076

DIST=.449344

XF  =.054159

YF  =.020005

ZF  =.500597

A-ZS=.09573

Z-BUFFER

.224E+09

.232E+10

.441E+10

.651E+10

.860E+10

.128E+11

.149E+11

.170E+11

.191E+11

postać drgań 2 ,   ω2=333.3

drgania skrętne
NOV 30 2002

20:15:54

PLOT NO.   5

NODAL SOLUTION

STEP=1

SUB =4

FREQ=215.454

SEQV     (AVG)

PowerGraphics

EFACET=1

AVRES=Mat

DMX =.875601

SMN =.146E+09

SMX =.909E+11

XV  =-.685325

YV  =.386713

ZV  =.617076

DIST=.433815

XF  =.029999

YF  =.026948

ZF  =.503146

A-ZS=.09573

Z-BUFFER

.146E+09

.102E+11

.203E+11

.304E+11

.405E+11

.607E+11

.708E+11

.808E+11

.909E+11

postać drgań 4     ω4=1353.73
drgania giętne w pł. xz

NOV 30 2002

20:16:36

PLOT NO.   8

NODAL SOLUTION

STEP=1

SUB =7

FREQ=589.201

SEQV     (AVG)

PowerGraphics

EFACET=1

AVRES=Mat

DMX =.877426

SMN =.543E+09

SMX =.237E+12

XV  =-.685325

YV  =.386713

ZV  =.617076

DIST=.436194

XF  =.030005

YF  =.028791

ZF  =.504992

A-ZS=.09573

Z-BUFFER

.543E+09

.268E+11

.530E+11

.792E+11

.105E+12

.158E+12

.184E+12

.210E+12

.237E+12

postać drgań 5  ω5=3704.3
drgania giętne w pł. xz

𝜔1
𝑠 = 3.5156 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔2
𝑠 = 22.0346 ⋅

1

𝑙2
𝐸𝐼

𝜌𝐴
,

𝜔𝑖
𝑠 =

2𝑖 − 1 𝜋

2

2

⋅
1

𝑙2
𝐸𝐼

𝜌𝐴
, 𝑖 = 3,4. . . ,

Dokładne rozwiązanie analityczne 
tylko dla postaci giętnych:
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z

m

x

=8*10  

=0.3

E=2*10  MPa

3

3 kg

5

L=1m

Przykład 4b Znajdź pierwszych 8 częstości własnych i powiązane postaci własne belki wspornikowej

Y

X

Wyciągnięcie linii
daje pola, które 

pokryjemy elementami 
powłokowymi 

z zadaną grubością

Wyciągnięcie 
powierzchni daje bryły, 

wypełnione 
elementami bryłowymi 

(modelowanie 3D)

Wyciągnięcie punktu
daje linię, której 

przypiszemy section
definiujący cechy 

przekroju

Zad. 1  Zad. 2 Zad. 3

Trzy sposoby modelowania zadania

UWAGA na wybór jednostek: SI (N, m, s, kg) lub mod_SI (N, mm, s, t )

ω =2
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1104 węzłów

660 elementów

336 węzłów

300 elementów

31 węzłów

15 elementów

ω1=2=221 rad/s ω1=2=218.5 rad/s

ωanalit1=219 rad/s

ω1=2=217 rad/s



1104 węzłów

660 elementów

336 węzłów

300 elementów

31 węzłów

15 elementów

ω2=2=336 rad/s ω2=2=307 rad/sω2=2=328 rad/s 31
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1104 węzłów

660 elementów

336 węzłów

300 elementów

31 węzłów

15 elementów

ω4=2=1378 rad/s ω5=2=1361 rad/s

ωanalit2=1373 rad/s

ω4=2=1358 rad/s



33

Pełna dynamika

Wszystkie typy analizy dynamicznej w programie ANSYS opierają się na następującym 
ogólnym równaniu ruchu dla układu elementów skończonych:

[M]{ü} + [C]{ů} + [K]{u} = {F(t)}

gdzie: [M] macierz masy, [C] macierz tłumienia, [K] macierz sztywności

{ü} wektor przyspieszenia, {ů} wektor prędkości, {u} wektor przemieszczenia węzłowego

{F} wektor obciążenia, (t) czas

Analiza dynamiki nieustalonej (znana również jako analiza historii czasu) jest używana 
do określania odpowiedzi dynamicznej konstrukcji poddanej obciążeniom zależnym od 
czasu. 
Istnieją trzy podstawowe metody rozwiązania dynamiki nieustalonej: 
• pełna metoda dynamiki nieustalonej (jest najbardziej ogólna, ma pełną zdolność 

nieliniową i może obejmować plastyczność, pełzanie, duże ugięcie, duże 
odkształcenie, usztywnienie naprężeniowe, kontakt i elementy nieliniowe), 

• metoda redukcji stopni swobody (kondensacja układu równań do głównych stopni 

swobody (master degrees of freedom - MDOF)) ,
• metoda superpozycji modalnej (ruch ciała opisuje się za pomocą  kombinacji liniowej 

postaci (wektorów) drgań własnych). 
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Analiza modalna

Analiza modalna jest przydatna w każdym przypadku, w którym interesujące są 
częstości własne konstrukcji. Na przykład element maszyny powinien być 
zaprojektowany tak, aby wytwarzać częstości własne, które zapobiegną drganiom 
elementu w jednym z jego podstawowych trybów w warunkach pracy. Analiza 
modalna jest używana do wyodrębniania częstości własnych i postaci drgań 
konstrukcji. Jest ważna jako pierwszy krok w każdej analizie dynamicznej, ponieważ 
znajomość podstawowych postaci i częstości własnych konstrukcji może pomóc 
scharakteryzować jej odpowiedź dynamiczną. Niektóre procedury rozwiązań 
nieustalonych i harmonicznych wymagają wyników analizy modalnej.

([K] – ω2[M]){u} = 0

Odpowiedź harmoniczna

Analiza odpowiedzi harmonicznej służy do określania ustalonej odpowiedzi struktury 
liniowej na sinusoidalnie zmieniającą się funkcję wymuszającą. Ten typ analizy jest 
przydatny do badania skutków warunków obciążenia, które zmieniają się harmonicznie 
w czasie, takich jak te doświadczane przez obudowy, mocowania i fundamenty maszyn 
wirujących.
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Spektrum odpowiedzi

Analiza widma odpowiedzi może być używana do określania odpowiedzi konstrukcji na 
warunki obciążenia udarowego. Ten typ analizy wykorzystuje wyniki analizy modalnej 
wraz ze znanym widmem do obliczania maksymalnych przemieszczeń i naprężeń
występujących w konstrukcji przy każdej z jej częstości własnych. 
Typowym zastosowaniem widma odpowiedzi jest analiza sejsmiczna, która służy do 
badania wpływu trzęsień ziemi na konstrukcje, takie jak systemy rurociągów, wieże i 
mosty.

Drgania losowe

Analiza drgań losowych to rodzaj analizy widmowej służący do badania odpowiedzi 
konstrukcji na wzbudzenia losowe, np. generowane przez silniki odrzutowe lub 
rakietowe.



f4=469Hz

Postać 4

f3=163Hz

Postać 3
f3=213Hz

Postać 3
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Przykład 5 – stalowy płaskownik (A=20x80 mm2)

wirujący względem osi Z  (n=3000 obr./min)

800 mm100

Drgania swobodne

f1=25.88Hz

Postać 1
f1=63.60Hz

Postać 1

f2=102 Hz

Postać 2

f2=107 Hz

Postać 2

f4=464Hz

Postać 4

ANALIZA MODALNA

ANALIZA STRUKTURALNA

Przemieszczenia UX [mm]

Naprężenia SX [MPa]

Drgania podczas obrotów

PRESTRES ON

MODEL

Elementy 8w 
SOLID185
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Przykład 6 – stalowy płaskownik (A=20x80 mm2)

Obciążony gwałtownie siłą (FZ=300 N)

800 mm100

ANALIZA STRUKTURALNA

Przemieszczenia UZ [mm]

Naprężenia SX [MPa]

MODEL

Elementy 8w 
SOLID185

T=0.25 sek

Przemieszczenia UZ

T=0.45 sek

Przemieszczenia UZ

Przemieszczenia UZ

Naprężenia SX
ANALIZA TRANSIENT – FULL (stepped loading)

T=0.25 sek

Naprężenia SX
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Przemieszczenia UZ

Naprężenia SX

Przykład 6 – stalowy płaskownik (A=20x80 mm2)

Obciążony gwałtownie siłą (FZ=300 N)

MODEL

Elementy 8w 
SOLID185

ANALIZA TRANSIENT – FULL (stepped loading)
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